If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-920=0
a = 2; b = 6; c = -920;
Δ = b2-4ac
Δ = 62-4·2·(-920)
Δ = 7396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7396}=86$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-86}{2*2}=\frac{-92}{4} =-23 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+86}{2*2}=\frac{80}{4} =20 $
| 3x+3=-7(x-9) | | 3(y-1)=6y+15 | | 3(x-2)-8x=4+4(2x+4) | | 8–(6v+7)=–6v–1 | | 2(x-1)+2(3x-1)=0 | | 6/9=10/a | | 1−10b=-9−9b | | -5u−9=-2u | | 3z−9=-2z+6 | | 8w+3=-7+10w | | ^5y-5(^6-2y)=0 | | 9u=8u+6 | | 10z=9z+10 | | -7+g=-6g | | 2(v+9)=-2(7v-1)+4v | | 13x+7(^3x-1)=^63 | | 6(w-1)-2=-6(-5w+2)-6w | | ^9(6+u)-2u=^10 | | -4(2x-1)=2x+24 | | 7w-18=4(w-6) | | 4n-16=n-1 | | 11=3(u-3)-7u | | -8v+4(v+3)=-20 | | 5c+2=4c | | 3+8n=7n | | 7b=-1+6b | | 7-8p=-9p | | 2(4w-9)=43 | | 9v−10v=-v | | -4=x/2=8 | | 3.2i-7=9 | | 8k=6+10k |